Anna Baron (Arestova)
Anna Arestova, M. Sc.
More Information
2024
A Novel Method for Computing Minimal Cut Sets of Variant-Rich Systems in Fault Tree Analysis
7th International Conference on System Reliability and Safety, ICSRS 2023 (Bologna, 2023-11-22 - 2023-11-24)
In: International Conference on System Reliability and Safety, ICSRS 2023 2024
DOI: 10.1109/ICSRS59833.2023.10381472
BibTeX: Download
, , , :
2023
Optimization of Bandwidth Utilization and Gate Control List Configuration in 802.1Qbv Networks
In: IEEE Access (2023), p. 1-1
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2023.3324957
BibTeX: Download
, , :
Joint Task and Flow Scheduling for Time-Triggered and Strict-Priority Networks
2023 International Conference on Computing, Networking and Communications (ICNC) (Honolulu, HI, 2023-02-20 - 2023-02-23)
In: 2023 International Conference on Computing, Networking and Communications (ICNC) 2023
DOI: 10.1109/ICNC57223.2023.10074288
URL: https://ieeexplore.ieee.org/document/10074288
BibTeX: Download
, , , , :
Towards Synthesizing Datasets for IEEE 802.1 Time-sensitive Networking
(2023)
DOI: 10.48550/arXiv.2308.10255
BibTeX: Download
(anderer)
, , , , :
2022
ITANS: Incremental Task and Network Scheduling for Time-Sensitive Networks
In: IEEE Open Journal of Intelligent Transportation Systems 3 (2022), p. 369-387
ISSN: 2687-7813
DOI: 10.1109/OJITS.2022.3171072
BibTeX: Download
, , , :
2021
Simulative Evaluation of the TSN Mechanisms Time-Aware Shaper and Frame Preemption and Their Suitability for Industrial Use Cases
20th Annual IFIP Networking Conference, IFIP Networking 2021 (Virtual, Espoo, FIN, 2021-06-21 - 2021-06-24)
In: Zheng Yan, Gareth Tyson, Dimitrios Koutsonikolas (ed.): 2021 IFIP Networking Conference, IFIP Networking 2021 2021
DOI: 10.23919/IFIPNetworking52078.2021.9472830
URL: http://dl.ifip.org/db/conf/networking/networking2021/1570720396.pdf
BibTeX: Download
, , , , , :
A Service-Oriented Real-Time Communication Scheme for AUTOSAR Adaptive Using OPC UA and Time-Sensitive Networking
In: Sensors 21 (2021)
ISSN: 1424-8220
DOI: 10.3390/s21072337
URL: https://www.mdpi.com/1424-8220/21/7/2337
BibTeX: Download
, , , :
LETT: An Execution Model for Distributed Real-Time Systems
2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall) (Norman, OK, USA, 2021-09-27 - 2021-09-30)
In: IEEE (ed.): 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall) 2021
DOI: 10.1109/VTC2021-Fall52928.2021.9625343
URL: https://ieeexplore.ieee.org/document/9625343
BibTeX: Download
, , , , :
2020
Design of a hybrid genetic algorithm for time-sensitive networking
20th International GI/ITG Conference on Measurement, Modelling and Evaluation of Computing Systems, MMB 2020 (Saarbrücken, 2020-03-16 - 2020-03-18)
In: Holger Hermanns, Holger Hermanns (ed.): Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2020
DOI: 10.1007/978-3-030-43024-5_7
BibTeX: Download
, , :
-
MBPLE4Mobility - Continuous model-based product line development for control systems in vehicle technology
(Third Party Funds Single)
Term: 2021-07-01 - 2024-06-30
Funding source: Bundesministerium für Wirtschaft und Technologie (BMWi)As part of a large consortium, the Chair of Computer Science 7 is involved in the project with the model-based system design of the vehicle communication systems under inclusion of variant diversity. For this purpose, on the one hand, an optimization for the configuration and resource design of the network architecture for different communication protocols and mechanisms is realized. On the other hand, safety analyses are performed using fault trees and extending them for product lines.
Network calculus is used for the formal verification of the required real-time properties. Therefore, suitable approaches for the scheduling methods applied in the networking technologies (e.g. TAS, priority-based, CBS, etc.) have to be formulated.
Model and code generators will be developed for automated and accelerated generation of the network optimizations. safety and real-time analyses. The results of these analyses are fed back into the modeling of the overall system.
-
Engineering of next-generation Train Control and Management Systems (TCMS)
(Third Party Funds Single)
Term: 2018-10-01 - 2021-09-30
Funding source: Siemens AGWith the developing technologies and methods in the field of real-time communication and the constantly increasing amount of data to be transmitted, the railway industry has jumped on the bandwagon of modernizing its processes.In the field of railway applications, various manufacturers still provide different and mostly incompatible solutions. These solutions are specified for a certain constellation of a train, but in most cases they are not able to offer the correct functionality if the constellation of the train changes. In order to separate safety and time-critical areas from non-critical areas that e.g. offer services for passengers such as wireless LAN, separate networks with their own infrastructure must also be set up. That means more weight and costs for the train and its manufacturers.
In the area of real-time communications, time-sensitive networking (TSN) has proven to be a possible solution to overcome the problems mentioned above. It provides methods and mechanisms for Ethernet technology that enrich it with aspects of determinism and reliability.
With Time-Sensitive Networks (TSN), the safety and time critical domains can be merged with non-critical areas, so that the safety and time critical domains can still be guaranteed sufficient reliability and determinism and the needs of passengers are satisfied.
The aim of this research project is to test the suitability of TSN in the railway sector. The primary goal of the project is to analyse whether the requirements of safety and time-critical applications can be met with respect to deterministic network communication and bounded latencies and at the same time to prove that the fulfilment of the requirements of critical applications does not lead to a significant impairment of non-critical applications.